On Existence of Unique Solution by First Order System

Kumar Gauraw ${ }^{1}$,Dr. Kundan Pd. Singh ${ }^{2}$
Research Scholar, P. G. Deptt. of Mathematics, V. K. S. U., Ara ${ }^{1}$
Former Head \& Associate Professor , Department Of Mathematics, Maharaja College ,Ara².

We consider the following system of simultaneous differential equations in terms of four components u, v, w and x and a vector function θ.

$$
\begin{gathered}
u^{\prime \prime}+l v+m w+n x=\lambda u \\
u-v^{\prime \prime}+p w+q x=\mu v \\
m u+p v+i w^{\prime}+r(x)=v w \\
n u+q v+r w-i x^{\prime}=\eta x
\end{gathered}
$$

where u, v, w, x are functions of u, l, m, n, p, r are real valued continuous functions of t, λ, μ, v, η are parameters which may be real or complex, $t \varepsilon[a, b], i=\sqrt{-1}$, and dashes denote derivatives w.r.t. t.
Theorem: The system $(1,1)$ of differential equations yields (admits) a unique solution

$$
\theta(t)=(u v w x)^{t}(t)
$$

satisfying the initial conditions

$$
\begin{gathered}
u^{t}(\alpha)=A_{1} \\
A^{(t)}(\alpha)=B_{1} \\
w(\alpha)=C_{0}
\end{gathered}
$$

and

$$
x(\alpha)=D_{t^{2}}
$$

where $A_{1} B_{t}(x=0,1), C_{0}, D_{0}$ are arbitrary constants (real) or complex) not all vanishing simultaneously, T denotes transpose (s) denotes sih derivatives w.r.t. t and $\alpha \varepsilon[a, b]$.
Proof. The system of differential equations (1.1) and set of initial conditions (1.2) may be alternatives written as:

$$
\begin{gathered}
u^{u}=-l v-m w-n x+\lambda u \\
v^{u}=i u+p w+q x-\mu v \\
w^{\prime}=i m u+i p v+i r x-i v w^{\prime} \\
x^{\prime}=i n u-i q v-i r w+i \eta x \\
(u(\alpha), u(\alpha), v(\alpha), w(\alpha), x(\alpha))=\left(A_{0} A_{1} B_{0} B_{1} C_{0} D_{0}\right)
\end{gathered}
$$

Futher for a vector V let V^{T} denote the transpose of V and

$$
V^{T}=\left(u u^{\prime} v v^{\prime} w x\right)
$$

where dashes denote derivatives w.r.t. t , then (1.3) and (1.4) have their respective equivalent form as:

$$
V^{T}(t)=F(T) V(T)
$$

and

$$
V(\alpha)=\left(A_{0} A_{1} B_{0} B_{1} C_{0} D_{0}\right)^{T}
$$

Where

$$
F(t)=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
\lambda & 0 & -\lambda & 0 & -m & -n \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & -\mu & 0 & p & q \\
i m & 0 & i p & 0 & i v & i r \\
-i n & 0 & i q & 0 & -i r & i \eta
\end{array}\right]
$$

Since V and F both are complex, hence we can write them as

$$
V=V_{1}+i V_{2}
$$

and

$$
F=F_{1}+i F_{2}
$$

Where V_{1}, V_{2} and F_{1}, F_{2} are real matrices.
With the help of (1.6) we get from (1.5)

$$
w^{\prime}(t)=\left[\begin{array}{cc}
F_{1} & -F_{2} \\
F_{2} & F_{1}
\end{array}\right] w(t)
$$

Where

$$
w=\left[\begin{array}{l}
V_{1} \tag{1.7}\\
V_{2}
\end{array}\right] w_{0}=\left[\begin{array}{l}
V_{1}(\alpha) \\
V_{2}(\alpha)
\end{array}\right]
$$

By Picard's theorem (Chapter 1 and 2 of ref 1, the expressions (1.7) yields a unique solution $\phi(t)=(u(t) v(t) w(t) t x(t))^{T}$ depending analytically on λ.
This proves the theorem.

2. Construction of boundary condition vectors

We use the symbol

$$
\begin{aligned}
\varphi(a / x) & \left.=u\left(\frac{a}{x}\right) v\left(\frac{a}{x}\right) w\left(\frac{a}{x}\right)\right)^{T} \\
& =(u v w)^{T}(a, x)
\end{aligned}
$$

($a, x \varepsilon[a, b]$)to denote a solution of (1.1) satisfying the following set of conditions:

$$
\begin{aligned}
(u(a / x))_{x=\alpha} & =u(a / a)=A_{0} \\
\left.u^{\prime}(a / x)\right)_{x=\alpha} & =u^{\prime}(a / a)=A_{1} \\
(v(a / x))_{x=\alpha} & =v(a / x)=A_{2}
\end{aligned}
$$

and

$$
(w(a / x))_{x=\alpha}=w(a / x)=A_{3}
$$

Where $A_{s}(s=0,1,2,3)$ are arbitrary constants (real or complex).
Further, we use above symbols and

$$
X_{t}(a / x)=u_{t}(a / x) v_{t}(a / x) w_{t}(a / x)^{T}
$$

and

$$
y_{0}(b / x)=\left(u_{r}\left(\frac{b}{x}\right) V_{r}\left(\frac{b}{x}\right) W_{r}\left(\frac{b}{x}\right) T(r=1 \text { to } 4)\right)
$$

be vector solution of (1.1) satisfying the conditions at $x=a$ and $x=b$ respectively as:

$$
\begin{aligned}
& u_{1}(a / a)=i, v_{1}(a / a)=0, w_{1}(a / a)=0, u_{1}^{\prime}(a / a)=0 \\
& u_{2}(a / a)=i, v_{2}(a / a)=i, w_{2}(a / a)=0, u_{2}^{\prime}(a / a)=0 \\
& u_{3}(a / a)=0, v_{3}(a / a)=i, w_{3}(a / a)=0, u_{3}^{\prime}(a / a)=0 \\
& u_{4}(a / a)=0, v_{4}(a / a)=0, w_{4}(a / a)=0, u_{4}^{\prime}(a / a)=0
\end{aligned}
$$

to proof that $D(d)=\operatorname{Prs}(d)$ is a real quantity.

References:

1. Coddington, E. A. and Levinson, N. (1985) : Theory of O. D. E., Tata Mc. Graw Hill Publishing Co. Ltd., T. M. H. Ed. 1972, New Delhi.
2. Mishra D. N. (1973) : Some problems on Eigen Function - Expansions, Ph. D. Thesis, Patna University.
3. Singh Chandrama (1992) : A Study on Boundary Value Problems, Ph. D. Thesis, M. U., Bodh Gaya.
4. Singh, Chandeshwar (1992) : On a System of Simultaneous Differential Equations, The Maths. Ed. Vol. XXVI,
5. Kumar Rakesh (2012) : Ph. D. Thesis, V. K. S. U., Ara
